Efficient Scene Simulation for Robust Monte Carlo Localization using an RGB-D Camera

TitleEfficient Scene Simulation for Robust Monte Carlo Localization using an RGB-D Camera
Publication TypeConference Paper
Year of Publication2012
AuthorsFallon MF, Johnnsson H, Leonard JJ
Conference LocationSt Paul, MN
Abstract

— This paper presents Kinect Monte Carlo Localization (KMCL), a new method for localization in three dimensional indoor environments using RGB-D cameras, such as the Microsoft Kinect. The approach makes use of a low fidelity a priori 3-D model of the area of operation composed of large planar segments, such as walls and ceilings, which are assumed to remain static. Using this map as input, the KMCL algorithm employs feature-based visual odometry as the particle propagation mechanism and utilizes the 3-D map and the underlying sensor image formation model to efficiently generate simulated RGB-D camera views at the location of particle poses, using a graphical processing unit (GPU). The generated 3D views of the scene are then used to evaluate the likelihood of the particle poses. This GPU implementation provides a factor of ten speedup over a pure distance-based method, yet provides comparable accuracy. Experimental results are presented for five different configurations, including: (1) a robotic wheelchair, (2) a sensor mounted on a person, (3) an Ascending Technologies quadrotor, (4) a Willow Garage PR2, and (5) an RWI B21. The results demonstrate that the system can perform robust localization with 3D information for motions as fast as 1.5 meters per second. The approach is designed to be applicable not just for robotics but other applications such as wearable computing. 

PDF: