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Abstract— This paper presents an algorithm for
feature-based exploration of a priori unknown environ-
ments. We aim to build a robot that, unsupervised, plans
its motion such that it continually increases both the
spatial extent and detail of its world model - its map.
We present a method by which the planned motion
at any instant is motivated by the geometric, spatial
and stochastic characteristics of the current map. In
particular each feature within the map is responsible
for determining nearby unexplored areas that if visited
are likely to constitute exploration. We assume that the
location of the features is uncertain and represented
by a set of probability distribution functions (pdfs).
These distributions are used in conjunction with the
robot path history to determine a robot trajectory suited
to exploration. We show results that demonstrate the
algorithm providing real-time exploration of a mobile
robot in an unknown environment.

I. MOTIVATION

This paper describes a method that enables a
robot using feature-based navigation techniques to
autonomously explore its environment. Recently, there
has been much written about feature based Simultane-
ous Localization and Mapping (SLAM) algorithms [1],
[2], [3], [4], [5]. Such algorithms attempt to answer the
question“where am I and what is around me ?”. That
answered the next obvious question is “where should I
go next?”. The exploration algorithm presented in this
paper provides a sensible answer to this question.

In [4] an indoor mobile robot was manually directed
around a populated indoor environment while perform-
ing SLAM. Upon instruction it then autonomously
returned to its starting position to with only a few cm
of error. The work presented in this paper removes the
need for manually guided exploration producing truly
autonomous operation.

We address the explore problem not from an ide-
alized theoretic perspective [6] but rather from within
the context of real-time navigation with noisy sensors
in an unknown and uncertain environment.

The underlying philosophy we adopt is that the
observed features themselves should inspire the explo-
ration process. Collectively the features form a map of
the known environment. Intuitively, examining an ex-
isting map should inspire a plan to expand its coverage

and refine its detail. Walls, for example, (line features)
tend to collate into long connected paths through the
environment, defining free space boundaries. It makes
sense then for mapped lines to entice excursions to
their end points, where mapping of a new adjacent
segment is most likely to occur. Similarly we would
benefit from having point-like targets (door frames and
corners) advocate driving an arc around them.

The benefits of our feature-based approach to explo-
ration can be enumerated as follows:
� The goal of exploration is to discover and enable

mapping of a novel area. It is predicated on good
navigation. Good navigation is itself reliant upon
trustworthy observations of the environment. In
feature-based SLAM this requires remaining in
sight of real-world features. This can be achieved
if exploration paths are dictated by mapped fea-
tures.� If the focus of exploration is derived from the
location and geometry of features they can serve
to vector the robot efficiently to places of interest
outside the immediate vicinity of the robot.� If only nearby features are considered then the
computational complexity and memory require-
ments of the algorithm are constant and indepen-
dent of map size and mission length. If however,
all mapped features are considered then the com-
plexity is still only proportional to the number of
mapped features.� Feature-based exploration is independent of the
kind of sensing employed. Any suitable propri-
oceptive sensor data can be fused to form a
feature-based representation. The evidence for the
existence of a feature can be accrued over multiple
time steps and robot locations [5].

Several successful contemporary techniques [7] [8]
take an opposite approach and use free space analysis
such as Voronoi diagrams to decide where to go next
and model free-space. This however is counter to the
needs of sensor-based navigation techniques which
depend on proximity (visibility) of features to produce
useful output. Other techniques use evidence grids
[9] to motivate exploration. For example in [10] a
“frontier boundary” between explored and unexplored
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Fig. 1. A visualization of the explore algorithm.

grid cells is defined. It is well known that grid-based
approaches do not lend themselves to good, long-term
SLAM navigation and mapping performance. Cell-
based techniques also suffer from grid to world align-
ment complications. Furthermore the memory costs of
exploration using grid based approaches scales poorly
with time. Bauer and Rencken [11] use feature based
mapping but retain a grid-based exploration strategy.
Exploration is more motivated by the trajectory history
of the robot (a visitation count in each cell) than by
it’s perception of its environment.

II. THE EXPLORATION ALGORITHM

We want to produce a means by which an au-
tonomous robot in possession of a feature-based rep-
resentation of its surroundings can decide where to
move so as to best explore it environment. This is
an action selection problem. There is a large literature
on action literature [12], [13], [14] but little written
from the perspective of map building in the presence
of uncertainty - the issue this paper addresses.

We assume the vehicle is equipped with a SLAM
algorithm that is capable of consistent mapping and
localization. No restrictions whatsoever are placed on
the form of this algorithm. It could use a single large
map or multiple small maps. The uncertainties in map
and vehicle estimates could be manipulated with EKF
or particle filter techniques. All that is required is an
output stream of feature and vehicle descriptions (type,
location, orientation and uncertainty).

For the purposes of this paper we need to define
what constitutes exploration. We propose the following
properties:

(a) Try to visit areas that are ‘open’ and sparsely
populated with features.

(b) Try to stay away from areas that have already
been visited.

(c) Preferentially explore locally – try to visit
areas that are close to and reachable from
the current position.

(d) Only when the local area appears to be ex-
plored consider traversing to a distant ‘un-
explored region’. An good example of this
behavior is backing out of a dead-end corri-
dor. We call this global traversal.

(e) Be able to preempt a global traversal when
the local area appears to be substantially
more interesting. For example, if a door that
had previously been closed was now open, we
would like to investigate the newly exposed
room.

(f) Try to explore with increasing resolution.
Initially try to determine the broad charac-
teristics and shape of the environment. Then
revisit areas to obtain a finer grain model of
the world.

The action selection is performed by evaluating the
utility of visiting any one of a set of locations. Each
possible location is generated by a parent feature and
shall be referred to from now on as as a goal. Our
policy is simple – having selected the most promising
goal steer towards it. If no direct line of sight path
exists then plan one using a “free-space highway” that
is built incrementally during exploration. Of course
our exploration plan may have to be influenced by
obstacle avoidance tactics but this does not impinge
on the action selection process.

III. ACTION SELECTION

This section details the goal generation and eval-
uation steps involved in selecting the most profitable
(in terms of explorations) location to visit. Figure 1
provides a visualization of the following algorithm.

A. Goal Generation

The ����� feature
���

is defined by a location vector	�

. Each feature generates a set of � goals  
 � � �

with respect to its own local coordinate frame � .
These goals may be expressed in the map frame by
composition with the features location vector

	�

.

 � � � ��� 	����  � � � �
In this way the course vector � to any goal � from the
current robot pose ��� is simply

� ��� �� �  �!
where � is the inverse composition operator. The
generation of the goals around the feature is a function
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of both feature type and geometry. It should produce
goals that if selected would fulfill or at least contribute
to the exploration qualities we defined in section II.

B. Goal Evaluation

For each generated goal  � � � � , a set " of #%$ sample
points are regularly distributed around it at radius & .
The aim is to assign each goal a score ')(+* ,.-/10

which is an indication of the utility in terms of
exploration of visiting it. A score of one implies a
strong return while zero infers no expected gain in
visiting the goal.

We shall evaluate ' by operating on the set of sample
points " . We sequentially remove elements from "
during a two-part selection process. At termination '
is calculated as the ratio of the final size of " to its
initial size # $ . Thus the fewer removals (or larger the
size of " ) the more utility we assign to the goal in
question. The motivation for and details of each stage
will now be discussed.� Step 1 : Sparsity Evaluation Using a method that

will be discussed in III-C, each sample point is
tested for a clear path between itself and the goal
performing the sampling. Sample points which
have no clear path back to the goal are removed
from " . For example in an area richly populated
by mapped features, sample points are more likely
to be occluded by features and hence removed
from " . Conversely, goals generated by features in
sparse areas are likely to have more un-occluded
samples and preserve the size of " . This behav-
ior then fits with the first of our definitions of
exploration: investigation of sparse regions. The
sample points enable a local measure of feature
sparsity around the goal location. Recall that the
actual location of the goal is determined by the
feature’s goal generation function. In this way
different feature geometries can cause sparsity or
‘openness’ to be evaluated at relevant locations.
Take for example the case of a line segment 243
shown in Figure 1. By generating goals near its
end points we can use the size of " to measure
the openness of the line at both ends.� Step 2 : Novelty Evaluation For each of the
remaining samples in " , a list of nearby trajectory
markers is built. We define ‘near’ to be within
a distance 5 of that sample. Typically we set5 � 6879 . Once again the visibility criterion is
invoked – this time between the sample point and
each of the nearby trajectory markers. If any of
the tested trajectory markers are visible, then the
current sample is removed from "

Line Segment

e1

e2

Clear Path

Fig. 2. Visibility testing between entities

� Scoring A score ' ranging from 0 to 1 is assigned
to the goal. It is calculated as the ratio of the final
and initial size of " . The final size of " is the
number of samples points for the considered goal
that:

– a) have a clear line of sight to the goal
– b) have no line of sight to any nearby trajec-

tory marker

C. Visibility Evaluation

The action selection process requires the determina-
tion of the existence of a clear path between different
entities. If as is the case with feature-based SLAM
techniques each feature has an associated estimated
uncertainty in location and orientation then it is de-
sirable to use this information in deciding if a clear
path exists.

We define a visibility function : which evaluates to
a non-zero value ;�<>= ? if a clear path of width @ exists
between any two entities A ! and ACB given all other
entities. In this paper, without prejudice, we limit the
entities A ! and A�B to be lines or points but in general
more complex objects can be used.

;D<�= ? � :FEGA !8H ACB H @JI (1)

Figure 2 illustrates the action of : . The figure shows
the pdfs of two orthogonal line features and two point-
like entities - for example current vehicle location and
a point on the vehicle’s past trajectory.

We can define the ’probable boundary’ of the � ���
feature by the locus of the �K��� sigma bound L !��M of its
pdf and truncate the distribution along this boundary.
Typically � is set to 2 or 3.

The evaluation of the visibility function : now
requires finding intersections of the hatched region in
Figure 2 joining the n-sigma bounds of N / and N%3 and
the regions enclosed by L !��M .
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The form of L !��M is a function of the kind entity
under consideration. That of a point-like feature is
simply a scaled version of the 1 O covariance ellipse.

The pdf of a line segment is more interesting. The
parabolic shape of the line pdf in Figure 2 stems from
the combination of lateral and angular uncertainty in
the line location.

Depending on the computational resources available
and the form of the pdf boundaries it may be necessary
to reduce the complexity of evaluating P by approx-
imating the probable feature boundaries with a set of
line segments. For example in the results we present a
scaled convex hull was used to represent line pdfs. The
determination of a clear path is then simply a matter
of finding line intersections.

D. Contexts and Free Space

An explore algorithm needs to operate in both local
and global contexts. When operating locally decisions
are made about what visible and nearby features should
be visited. For example when traversing down a previ-
ously unvisited corridor there may be a local focus at
the end of line segments describing the corridor walls.
The global mode is required to determine interesting
regions distant from the current robot location. For
example a corridor that was being explored under local
control is now determined to be a dead-end – the local
area is now explored and a new area, perhaps far away,
must be found that is ripe for exploration.

Upon determination of a new global focus the ve-
hicle needs to be able to plan and execute a path to
it. The path is built from a collection of free space
markers that is constructed as the robot moves about
its environment. The location of the vehicle marks a
region of free space. If we keep track of past locations
we create a trajectory history which defines a set of
reachable points. We refer to these points as free space
markers. When a free space marker is created (almost
always at the current robot location) its adjacency to
other existing markers is calculated. Marker adjacency
is synonymous with co-visibility – if there is an
uninterrupted line of sight between two markers they
are considered adjacent. As the robot moves through
the environment we create a graph in which nodes of
markers locations and edges of adjacencies (Figure 1).
This graph can be conceived of as a highway of known
free space [15] or a skeletal representation of reachable
locations [16][17].

When a region to explore has been determined via
global search it is unlikely that it is directly visible
from the robot’s current location. In this case the free-
space graph is used to find a route to the desired

location. The vehicle steers to the closest marker and
then uses a shortest path algorithm to find the shortest
route to a marker closest to the desired point. The robot
controls itself from marker to marker until the last one
is reached at which point in leaves the free space high-
way and attempts to steer to the desired destination.
The fact that a SLAM algorithm instantiates features
from observations taken from current robot locations
means that all features must be observable by moving
through and between past locations. Furthermore as
we advocate a feature-based exploration in which the
the focus of exploration is close to and derived from
mapped features, the robot will be able to observe any
location dictated by the exploration algorithm.

E. Integration

Figure 3 is a flow chart of the entire explore algo-
rithm. It is designed to allow direct translation into
an implementation. At every iteration the algorithm
flows from Start to Exit. The flow of the algorithm is
regulated by the state variables and constants described
in table III-E. The Start values correspond to the
assignment of named variables at the start of the entire
algorithm. If the variable has a ‘yes’ in the Reset
column then at every iteration of the algorithm it is
reset to this value otherwise it remains unchanged. The
significance of some parts of the diagram warrant dis-
cussion. These regions have been numerically labelled
and are now discussed.

1 GOAL is set to a new, locally found goal.
2 The best local goal is not substantially better

than the already selected goal GOAL which
was also found locally. This hysteresis pre-
vents unnecessary swapping between goals
that are by definition in the same area.

3 While on a transit to a globally determined
goal (LastGoal=global ) a more interesting
local goal was found. The transit to the global
goal is preempted with this new focus of
exploration.

4 The last goal was found globally, no local
goal looks any better but Q seconds have
passed and the global goal is re-evaluated to
ensure that it is still the most interesting place
to visit.

5 No local goal was found that was more
interesting than the overall exploration index5KR . The process begins again but now sets
Search to global. The algorithm will next
flow down the left hand side of the chart.

6 A new global goal was found but it was
not substantially better than the one already
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Fig. 3. The Exploration Algorithm. Points of interest are labelled with numbers and discussed in Section III-E. Note that one iteration
may take two passes through the flow chart as the search for goals transitions from local to global contexts.

Name Range Start Reset Meaning
5 R 0:1 1 no the overall exploration index

GOAL location NULL no the best current exploration goal
LastGoal global/local local no mode in which last goal was set
Search global/local local yes current search modeS

0.1 (constant) 0.1 no hysteresis for changes in GOALQ any 4 no time between forced re-appraisal of a global
goal� any 5 no The number of features considered in a goal
search

TABLE I

TABLE OF PARAMETERS
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selected and in transit to. Note that the hys-
teresis implies a cost of switching global
goals equal to twice that of switching local
ones. This reflects the fact that globally found
goals are likely to be far away and may take
an appreciable time to transit to. It would be
better to finish exploring the current focus
region, even though it is not the absolute
favorite, and then move on.

7 A new goal is set to a globally found one.
This always happens if a global search has
been undertaken and the last found goal was
found locally, ie we are on the second pass
of the algorithm as described by label [5].
This is the only place that 5 R is set because
it is the only place that a global appraisal of
the global state of exploration has occurred.
Together 5DR and GOAL represent the score
and location of the most promising areas for
exploration in the mapped environment.

F. Obstacle Avoidance and Local Path Planning

Obstacle avoidance is an important component of
autonomy. Lack of space permits only a broad expla-
nation of the techniques we employed in this work. The
motion commands are issued in terms as desired poses
(x,y, T ) in odometry coordinates. A path of polynomial
curvature is found that leads to the desired goal pose
subject to constraints of minimum path length and
initial radius of curvature being equal to that currently
being driven. The platform’s angular and linear veloci-
ties are controlled to achieve the desired instantaneous
radius or curvature. Obstacle avoidance is achieved by
selecting a radius of curvature as close to the desired
one as possible but which would not cause a collision
with a detected obstacle within the near future (in our
case 2 seconds).

IV. RESULTS

The explore algorithm described in this paper has
been implemented in C++ and integrated with the MIT
Department of Ocean Engineering’s “MOOS” vehicle
software suite.

The exploration algorithm was run live on a B21
at the AAAI Robotics Challenge in Alberta, Canada.
The combination of exploration, SLAM, and obstacle
avoidance enabled the vehicle to explore and build
a map of the conference area during a coffee break
between conference sessions. However the path taken
to avoid the multitude of coffee drinkers obfuscated
the underlying actions of the exploration algorithm.

As an alternative, the results we present are taken
from an autonomous explore session running inside
the corridors of MIT. The explore module is unaware
of the source of feature descriptions – simply receiving
them over a network connection. To date the explore
module has been run successfully two different SLAM
implementations — the “CMLKernel” [4] and the At-
las framework for large-scale SLAM [18]. The results
presented here were generated using a B21 mobile
robot with SICK laser scanner data processed by Atlas.

Figure 4 shows a plan view of the explore algorithm
in progress. The potential exploration goals are marked
with squares (locally visible) and circles (globally
found goals). The exploration score attributed to each
goal the last time it was evaluated is written above the
relevant symbol. The currently selected goal is filled
with a solid triangle. Note how the 0.86 goal is not
substantially better than the nearby and locally visible
0.71 goal. The preference for local exploration wins
out here and the robot heads in the direction indicated
by the solid line. Figure 5 shows the vehicle returning
from a completed exploratory excursion into an area
filled with lockers and carrying on up a previously
seen corridor. The tessellating trajectory markers being
dropped as the vehicle moves are shown as hexagons.
Figure IV depicts the situation some time later. The
explore algorithm is directing the vehicle up a corridor.
The end of the corridor has been reliably observed but
the walls only partially so, creating intriguing openings
at the corridor’s end. A few moments later,see Figure
7, the side walls have been mapped and the corridor
has become closed off before the robot has reached its
previously intended goal. At this point the local area
is well explored and a new exploration goal has been
found back down the corridor and to the left. The free-
space graph has found a route to the desired goal and
is shown as a sequence of lines connecting some of
the free space markers in the figure. This process of
feature-inspired exploration was allowed to continue
for half an hour until the vehicle completed a loop
and returned to its starting area. Figure 8 is a 3D-
extruded view of the map built by the CML algorithm
under the guidance of the exploration. Throughout the
session the low level obstacle avoidance task produced
local path planning and obstacle avoidance.

V. EXTENSIONS AND FURTHER WORK

The results presented are for a medium-scale in-
door environment. Extension to large scale problems
covering several kilometers is the subject of current
research, by coupling the exploration algorithm to
the multiple-map “Atlas” framework. Another useful
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Fig. 4. The opening stages of the exploration. From its starting
location the vehicle maps four walls. Immediately the north-east
wall is evaluated as the most open and visible - a path is plotted
towards it.

0.57

0.43

Fig. 5. The initial area of interest (a set of lockers) has been
mapped. With the local area explored, a path is chosen that takes the
vehicle down a corridor that was initially passed over for exploration.

0.86

0.71

0.14
0.71

0.57

Fig. 6. Fifteen minutes later the robot is exploring a long corridor
that appears to be open at its ends.

0.71

Fig. 7. A little further up the corridor more of the walls have been
mapped. The local environment now appears to be closed off and the
road map of free-space is used to plan a route to new “promising”
area for exploration in the south-west corner.

property of an exploration algorithm that has not been
discussed here is that of planned motion and perception
to aid not just mapping but localization as well. With
analysis of the correlations between vehicle and locally
observed features and the uncertainty of the vehicle
pose estimate it should be possible to mitigate some
of the conditions that lead to localization failure. For
example, after executing a sharp turn around a corner
in a corridor it is advantageous to briefly turn back
and observe the corridor walls to better estimate the
new vehicle heading. Finally, at the time of writing
the algorithm does not take the path length to goal
into account when deciding where to drive the vehicle.

This simple addition will prevent the robot undertaking
long traversal to visit a point only marginally more
interesting than that one much closer to its current
location. In conclusion, the algorithm we have pre-
sented produces reliable and sensible autonomous ex-
ploration of unknown environments. The approach uses
a feature-based world representation to deduce robot
trajectories that are likely to expand and refine the
map of the robot’s environment. We have demonstrated
truly autonomous exploration and mapping running
real-time in an everyday indoor environment.
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Fig. 8. A 3D extruded view of the map built under the direction of the explore algorithm. The robot is shown nearing its start point
having circum-navigated a loop of a building. Each side of the loop is around 25m long.
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